A parameter-optimizing model-based approach to the analysis of low-SNR image sequences for biological virus detection
نویسنده
چکیده
This thesis presents the multi-objective parameter optimization of a novel image analysis process. The focus of application is automatic detection of nano-objects, for example biological viruses, in real-time. Nano-objects are detected by analyzing time series of images recorded with the PAMONO biosensor, after parameters have been optimized on synthetic data created by a signal model for PAMONO. PAMONO, which is short for Plasmon-Assisted Microscopy of Nano-Sized Objects, is a biosensor yielding indirect proofs for objects on the nanometer-scale by measuring the Surface Plasmon Resonance (SPR) effects they cause on the micrometer scale. It is an optical microscopy technique enabling the detection of biological viruses and other nano-objects within a portable device. The PAMONO biosensor produces time series of 2-D images on the order of 4000 half-megapixel images per experiment. A particular challenge for automatic analysis of this data emerges from its low Signal-to-Noise Ratio (SNR). Manual analysis takes approximately two days per experiment and analyzing person. With the automatic analysis process developed in this thesis, occurrences of nano-objects in PAMONO data can be counted and displayed in real-time while measurements are being taken. Analysis is divided into a GPU-based detector aiming at high sensitivity, complemented with a machine learning-based classifier aiming at high precision. The analysis process is embedded into a multi-objective optimization approach that automatically adapts algorithm choice and parameters to changes in physical sensor parameters. Such changes occur, for example, during sensor prototype development. In order to automatically evaluate the objectives undergoing optimization, a signal model for the PAMONO sensor is proposed, which serves to synthesize ground truth-annotated data. The parameters of the analysis process are optimized on this synthetic data, and the classifier is learned from it. Hence, the signal model must accurately mimic the data recorded by the sensor, which is achieved by incorporating real sensor data into synthesis. Both, optimized parameters and the learned classifier, achieve high quality results on the real sensor data to be analyzed: Nano-objects with diameters down to 100 nm are detected reliably in PAMONO data. Note that the median SNR over all nano-objects to be detected was below two in the examined experiments with 100 nm objects. While the presented analysis process can be used for real-time virus detection in PAMONO data, the optimization approach can serve in accelerating the advancement of the sensor prototype towards a final setup of its physical parameters: In this scenario, frequent changes in physical sensor parameters make the automatic adaptation of algorithmic process parameters a desirable goal. No expertise concerning the underlying algorithms is required in these use cases, enabling ready applicability in a lab scenario.
منابع مشابه
Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملThe advantage of using a diode laser instead of a Q-switched laser in photoacoustic imaging of tissues
Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be ...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملRapid detection of infectious bursal disease by loop-mediated isothermal amplification for field analysis
Infectious bursal disease (IBD) is an immunosuppressive, acute and highly contagious illness of growing-poultry stock infected with infectious bursal disease virus (IBDV). It is common in Pakistan, causing potential economic losses throughout the year. The objective of the study is to propose a rapid, sensitive and specific diagnostic tool, and compare it with existing commonly used reverse tra...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016